

User´s guide SmarteloPC VNU v2020.1

SmarteloPC VNU has been developed in the context of the BioEcoN project (*Erasmus+ EACEA project KA2- No 586183*)

Welcome to Smartelo

One of the most important decisions in forest management is signaling. At this stage, the number and type of trees that will remain standing (and, conversely, those that will be harvested) are determined, so as to improve the state of the forest, incorporate the criteria for conservation of biodiversity and ensure sustainable use of the forests.

Over the last few years, different forest marteloscopes have been created throughout Europe. These are forest areas in which all the tree species that make them up have been notated, measured, numbered and spatially located. Some of the main applications of the marteloscopes are focused on the practice of signaling and improvement in decision making (professional field), estimation of tree and stand variables (educational purpose), the carrying out of research projects and the dissemination and transfer of sustainable forest management projects (social purpose), among others.

Directly related to these objectives, Smartelo is composed by two apps:

1. **Smartelo PC**: An app that manages the large amount of data from marteloscopes and allows obtaining and making available different results (dendrometric, economic, ecological) from each one of them for the improvement of decision making in this important activity.

2. **Smartelo Portable**: Adaptation of Smartelo PC that allows the users to carry out forest marking activities in situ by means of an application adapted for mobile devices, in which real time information is obtained about the signaling status based on the forestry objectives preestablished by the user.

The design and interface of Smartelo allows the user to work with it as a general forest information manager, since the main source of information it handles is the forest inventory. That is why this tool has research application in areas such as sustainable forest management, education, exploitation of forest resources, wood transformation industries, climate change, renewable energies (biomass) or valuation. Smartelo aims to introduce new technologies in the forestry sector and related areas.

This manual has been developed with the aim of bringing the structure, operation and main features of the desktop version of Smartelo (known as Smartelo PC) closer to the user.

Smartelo PC is an Excel workbook made up of 10 main sheets, plus 2 additional sheets (Credits and Help).

The following guide explains the main functions and features offered by Smartelo PC, according to the different sheets that constitute it, being these the following:

1.	Homepag.4
2.	Schaeffer Ratespag.6
3.	Coordinatespag.8
4.	Treespag.9
5.	Standpag.11
6.	Economypag.12
7.	Ecologypag.14
8.	Teamspag.15
9.	Biomasspag.17
10.	Resultspag.19

1. HOME spreadsheet

It is one of the most important sheets in Smartelo because it is where the main parameters that make smartelo works must be set. These are divided into the following sections:

- **General info:** General data must be introduced, such as the name and area of the marteloscope, economic data such as the updating rate, prices of the dead tree, and others referring to ecological aspects and marteloscope management. In addition, data referring to the number of trees (Tree Sheet) and Team/operators (Team Sheet) participating in the management of the marteloscope are automatically obtained.
- Shaeffer cubic rates: The total unit volume (in cubic meters) is one of the base data to obtain most of the results that Smartelo offers. To do this, Smartelo allows you to enter volume data per tree (if available), enter your own cubic rate , or use Schaeffer cubic rates for the calculation of each unit volume. In this section, the best cubic rate, an associated rate number, and a morphic coefficient (recommended 0.6 for hardwoods and 1 for softwoods) must be selected for each species. The Schaeffer Rates sheet is designed to facilitate the choice of these parameters.

Note: If volume data is available, "Yes" must be marked on the Home page, and therefore the Schaeffer cubic rate parameters do not need to be completed. More information about obtaining and using this variable (Total volume) is shown on the Schaeffer Rates sheet.

• **Team/Operators:** It shows the different teams or operators that intervene and/or make decisions about the signaling activity. To visualize this information it is necessary to click on the button "Extract".

Note: It is necessary that the Teams sheet is properly filled in so that all of them can be viewed in the Home sheet.

- **Species list:** As with the Teams/Operators, you must click on the "Extract" button to visualize the different species present in the marteloscope. It is necessary that in the Trees sheet there is a relationship between the different trees and the species to which they belong so that these species can be extracted and visualized in the Home page.
- Limit diameters: Smartelo offers a series of results referring to the evolution of dendrometric and financial assets, as well as mass analysis and others (See Results Sheet). Many of these results are shown classified by diameter class or type of wood, among other parameters. The determination of the different types of wood (thick, medium or thin) is done by setting a series of limit diameters (lower and upper) for each of them in the Home page.

Note: All the trees with a diameter lower than the minimum fixed in this section, will not be taken into account in the final results exposed in the Results sheet.

Fig 1. Smartelo's PC HOME sheet screenshot

2. SCHAEFFER RATES spreadsheet

The Schaeffer Rates sheet is intended to make it easier to choose the most suitable Schaeffer cubic rate for each species in the marteloscope, if no previous unit volume data is available, or if you wish to obtain this data using this method. To do this, the following steps must be carried out:

- 1. Choose the species for which you want to obtain the most suitable Schaeffer cubic rate. Select such a species in the drop-down list below the Species cell.
- 2. Then, the mean diameter and the minimum volume difference (%) are calculated automatically for the selected species. For the calculation of the mean diameter per species to be effective, it is necessary that the Tree Sheet is properly filled. Once this has been done, the rates and the most appropriate rate number for each species will appear in green. It is recommended to choose a cubic rate for which there are several rate numbers marked and in which the difference in volume (%) is less, in order to obtain unit volumes closer to reality (less deviation from the average). Once the most suitable tariff and number have been chosen, these parameters should be inserted in the Home page.

In the Schaeffer Rates sheet, you can obtain additional information about Schaeffer cubic rates and the methods available in Smartelo to obtain the total volume per tree (unit).

Once this has been done, the rates and the most appropriate rate number for each species will appear in green. It is recommended to choose a tariff for which there are several tariff numbers marked and where the difference in volume (%) is less, in order to obtain unit volumes closer to reality (less deviation from the average). Once the most suitable tariff and number have been chosen, these parameters should be inserted in the Home page.

As indicated in the Smartelo help, the Total Unit Volume variable is fundamental for obtaining most of the results. In the case of not having this information, Smartelo offers two possible alternatives:

- 1. Introduction of a cubic rate defined by the user. To do so, write your rate in the form of a formula in the Volume column of the Trees sheet.
- 2. Use the Schaeffer cubic rates. The Schaeffer cubic rates are mathematical formulas that provide the unit volume according to two variables, these being
 - . Mean diameter of the tree at normal height (1.3 meters) in centimeters
 - . Rate number, which is a standard that indicates the volume (in cubic meters) of the 45-centimeter diameter tree.

Smartelo offers these rates by default, since they make it possible to determine the volume of the main forest species in a simple and efficient manner. It is only necessary to know the average diameter of a given stand and to use one of the 3 proposed rates (fast, slow or very slow) depending on the growth rate of the species.

Note: It is possible that the study species for which you wish to determine the unit volume is slow growing, and this sheet proposes a Fast rate and a rate number 4. This is due to the data of mean volume that is estimated as a reference. Given this fact, it is advisable to always take the rate and the number that has a smaller or smaller volume difference, since in this way the unit volumes of each tree of that species will be less than the real volume of each one of them.

This Schaeffer Rates sheet is designed to facilitate the task of choosing the number and type of rate most appropriate for each species according to the mean diameter of the trees belonging to that species. For more information on how to use this sheet, visit the section corresponding to the Schaeffer Rates sheet in the Smartelo help.

Fig 2. Smartelo's PC SCHAEFFER RATES sheet screenshot

3. COORDINATES spreadsheet

The Coordinates sheet is designed to represent in an XY scatter plane the different trees and stakes that make up the marteloscope. Using this dynamic map, it is possible to easily visualize the spatial distribution of diameter, height, volume, biomass, carbon and CO2 of the marteloscope.

Note: Additionally, there is the possibility of adding auxiliary data regarding the structure and location of the classroom, such as the reference stakes, azimuth and distance for each stake, in case absolute coordinates are not available and you wish to calculate such XY coordinates using a formula designated by the user. If you want to calculate the coordinates using this method, you need to enter an additional value corresponding to the rotation angle of the plane (in centesimal degrees) on the Home sheet.

Fig 3. Smartelo's PC COORDINATES sheet screenshot

4. TREES spreadsheet

It's the main sheet of Smartelo. In it, all the data referring to the inventory of the marteloscope must be entered, the most representative being the following (cells in white):

- Tree number
- **Quadrant:** Each marteloscope is made up of 16 quadrants, which are delimited by reference stakes. It is recommended that a GIS be used to determine the quadrant to which each tree in the marteloscope belongs.
- Species
- **Diameter** (in centimeters) at normal height (1.3 meters) measured in 2 directions (diam1, diam2)
- Total and canopy height (in meters)
- Volume: If you have a unit volume (per tree), you must enter it in this column "Volume" (in cubic meters). Otherwise, if you do not wish to calculate the volume using Schaeffer cubic rates, you can enter a rate or cubic formula in this column and mark on the Home page that volume data is available.

The total volume per tree (unit, in cubic meters) is one of the main variables Smartelo works with, since most of the results it offers depend on it.

When you start Smartelo, you must check if you have this data in your inventory, or Smartelo must calculate it for you. Below you will find all the possible options and the way to proceed in each of them:

• Option A: I do not have volume data. I want to use the cubic rates offered by Smartelo by default.

These cubic rates are called Schaeffer (more info on Schaeffer Rates sheet). To obtain the volume by this method, select "No" on the Home sheet and follow the instructions indicated in the help on the Home and Schaeffer Rates sheets.

- Option B: I have no volume data. I want to use my own cubic rates. To do this, select "No" on the Home sheet and access the Trees sheet. Place yourself in the Volume column, type the formula corresponding to your cubic rate and drag down to update all the cells.
- Option C: I have volume data. Select "Yes" on the Home sheet, and go to the Trees sheet. Then insert the Volume data in the Volume column.
- **Dead, Risk of depreciation, crown defects:** A 1 should be marked if positive, or a 0 if negative. These values apply a percentage reduction on the utilization price of the tree and other economic results.
- Ecological codes: Smartelo allows the ecological value of each tree to be determined by means of an ecological mark. Thanks to this mark and a price per ecological point (established in the Home page), it is possible to obtain an ecological or environmental price per tree and for the whole marteloscope. This option can be used for the implementation of payments for environmental services, or help in the management of decision making, such as harvesting or conserving a tree according to its exploitation price, ecological, current and potential, among many other applications.
- Long, Lat: Location of each tree

On the right side of this sheet, Trees (orange shaded cells), there are the different calculations that Smartelo performs. These calculations provide results of an economic, dendrometric, and ecological type, among others. For more information about their meaning, see the comments available in each cell of the Trees sheet.

рэтхэллен	•		• •		• •	0	•	• •		• •	•	•	•	•	• •		• •	•	•	•	• •	• •	0	•	• •	• •	•	•	•	•	•	• •		•	•	•	• •	
griberg lesigolosa	7	7	• •			0	0	• •			0	0	0	•	• •			0	0	0			0	•			0	0	0	0		• •		• •	0	0		00
əəhq noiasalilaU	3 61,91	5,03.C	8,61 0	0,70 0	0000 0000	14,11 C	6,63 C	9,29 €	0.70.6	3,20 €	45,99 C	2,52 C	8,73 C	7,70 C	5,09.0	0.000	21,45.6	0,37.6	11,61 €	4,04 C	2,30.0	11,48 C	26,83 C	1,45 C	5,12.6	668.0	17,90 €	7,08 C	9,10 C	46,87 C	1,78 €	15,16 C	5000	129 0	31,23 C	1,50 C	3,91 6	7,86.0
Quality	A	¥ ·	۹.	4 4	< ⊲	A	A	۷.	4 <	4 4	٨	A	0	A	۷.	4 <	4 4	•	A	A	• •	. ∢	A	0	۷ ۹	<	٨	A	A	۷	۷.	۷.	< 0	• •	A	A	< ⊂	. a
əmuloV	1,216	0,558	0,822	0,125	0.736	1,189	0,711	0,844	1,149	0,406	1,816	0,438	0,873	0,731	0,596	strin	1,216	0,184	1,034	0,674	0,230	1,034	1,383	0,291	0,558	0.736	1,110	0,735	0,860	1,756	0,318	0,976	0050	0.240	1,442	0,265	0,455	0,785
8	0,064	620/0	0,044	010/0	66000	0,063	0,039	0,045	0,010	0,022	960'0	0,023	0'080	0,040	0,032	0,010	0.064	0,010	0,055	0,036	0,019	0,055	0,073	0,015	0,031	66010	0,059	0,039	0,047	960'0	0,017	0,053	2000	0.013	0,076	0,014	0,025	0,055
دە	8	8	a :	8 9	8	8	8	ង	R 9	8 12	8	SI.	8	ង	8 9	8 9	8	9	ង	8	÷	ង	8	5	នះ	ន	ĸ	8	ដ	×	n 1	រង រ	8 8	1	8	: ء	8 9	2 12
meiQ	28,65	19,10	2722	12.41	22.28	28,33	22,28	19/87	11 46	16,55	35,01	91,11	27,69	22,60	20,05	ST'OT	28,65	11,14	26,42	21,33	15,60	26,42	30,56	14,01	19,74	22.28	27,37	22,228	24,51	35,01	14,64	26,10	21.65	12.73	31,19	13,37	17,83	26,42
٦el	21,01032	21,01031	2010/12	2010/12	21.01020	21,01021	21,01015	21,01015	51010/17	21,01014	21,01018	21,01024	21,01023	21,01023	21,01021	21010/17	51010/12	21,01017	21,01015	21,01015	21,01014	21,01010	21,01010	21,01011	21,01009	21 01011	21,01009	21,01013	21,01011	21,01010	21,01008	21,01004	21 01001	21 01002	21,00997	21,00993	21,00995	21,00998
Ячот	105,51420	105,51419	21412,201	105,514,20	105.51414	105,51408	105,51414	105,51416	105 51415	105,51427	105,51428	105,51430	105,51424	105,51436	105,51435	105 51428	105,51440	105,51439	105,51438	105,51433	105,51435	105,51428	105,51426	105,51433	105,51434	105 51439	105,51436	105,51447	105,51449	105,51446	105,51443	105,51440	105 5143K	105.51434	105,51432	105,51436	105,51437	105,51444
ទbတ ၊ရာ ဖြှဝါလဒီ	13	3																																				
bead	•	0	• •		• •	0	•	• •			0	0		•	• •			0	0	0			0	•	• •		0	•	0	•	• •	• •	-	• •	•	0	• •	4 14
Ιον	1,216	0,558	0,822	251,0	0.736	1,189	0,711	0,844	241/1 0 100	0,406	1,816	0,438	0,873	0,731	0,596		1,216	0,184	1,034	0,674	0,230	1,034	1,383	0,291	0,558	0.736	1,110	0,736	0'800	1,756	0,318	9/5/0	0500	0.240	1,442	0,265	0,455	0,786
202	675,213	249,119	449,032	100,305	400,107	659,614	381,687	461,823	000/100	215,518	1024,774	233,224	319,436	392,681	321,266	000,07	675,213	94,565	570,436	365,422	128,125	570,436	772,269	152,371	245,609	400.107	613,950	400,107	388,187	1004,173	116,911	506,865	261.007	124,828	805,769	138,243	204,611	115,052
э	184,183	67,954	122,486	105/12	109.140	179,921	104,115	279,221	10.613	58,788	252,672	63,618	87,135	107,114	87,634	10,705	184,183	25,795	155,602	619'66	34,950	155,602	210,657	41,563	965'99	109.140	167,471	109,140	105,888	273,915	45,547	138,261	105'05	34.050	219,795	37,710	55,813 1007 CT	150,167
₿ \ ¯qM	44,300	6,326	41,301	2 000	100%	49,648	30,670	41,860	1070	217,22	61,302	25,173	•	31,746	34,696	005.71	43,505	10,040	48,808	41,356	•	42,434	48,892	8,446	25,464	41,658	48,631	34,485	41,566	86,342	18,515	45,689		12.059	43,901	22,162	266,61	• •
[₽] N¯IM	45,234	6,751		101	1818	44,529	20,018	35,040	1000	266'02	618,62	22,136	•	20,579	27,454	100/01	5 234	12,065	10,387	755,65		785,01	605'61	16,627	14,266	81818	42,433	81,819	22,005	\$3,825	17,683	26,765		14.541	50,942	15,574		• •
8 ₇ -sw	\$1,065	15,817	118/66	12510	0.823	31,682	56,378	13,714	1 600	3,122	30,714	8,066	•	00,680	11/3		14.243	1,685	90,279	111/11		71,146	17,066	1337	3,668	77.482	25,056	18,646	16,822	762,70	8,027	191,20		6271	71,240	2,500	242	
%_80A	368,365 1	135,908	1 1/5/552	21/5	18,280	359,855 2	208,231	1 656,125	2 005,000	112,111	359,070 3	127,236	174,270	14,229	175,268	42,830	1 206,365	51,591	311,203 2	1 735,991	668'69	1 202 118	21,314 2	83,127	5 555 551	1 218,280	34,943 2	18,280	1 71/112	547,830 4	560,19	276,522 2	136,987	001.89	1 065'681	75,419	111,626	EEE'000
Perimeter (cm)	8	8	2 3	8 g	8 8	8	8	12 1		8 03	91	3t	6	R	8 1	2 2	8 8	8	8	6	q 1	5 58	8	\$	8 9	1 8	8	8	4	2	\$ 1	12	8 2	9	8	4	8 6	2 28
(m) sW_vqonS	67	m	2	8 3	12	6,25	3,7	ų :	3 :	1 69	6'9	5,4	0	4	3	\$ 0	2 2	•	1,7	5,24	• ;	1,98	5,22	•	ລູ :	3	5	2,9	8,14	9,55	23	8	* c	62	7,5	m	20	0
(m) iW_Man	5 7.7	- m	21	1 1 1 1	53	5.25	5,4,5	ო : ყ.	4 4 4 4	186	2 6,4	5 31	•	0 2,8	5 5 5 1	2 C	1 10	•	589	201 21	• •	1 11	8 3,91	•	5 5	13	9 6,7	2, 7,9	0 9,6	5, 8,1	8 i	2 (8	20	2	1 5,7	16 3,2	ې د ۳	••
(m) qone2_o1_H H to w can(m)	5 7.				22	4,5	2	4,5 17	21 P	, e,	3,5	2,3 12	•	9,5	7,5 15	2'0 2 2 2	67 10 %		6,9 14	5,5 20	•	5,3 12	5,7 12		5.4	1 oi	4,6	4,5 12	4,4	7,2 14	6,7 7,	6.7 7.9	n c	42	2	1,2 10	23	
(ш) эн	14,00	16,00	18,00	8 11 1	12.00	18,00	18,00	18,00	0002	05,01	18,00	12,50	6,50	18,00	05/11	0011	13,50	4,70	20,00	22,00	8,00	15,10	15,00	2,10	12,50	20.50	18,50	14,00	13,10	20,50	02'6	00/11		2.20	11,60	16,00	13,00	12,50
(mɔ) smelū	8,6478898	2665850/6	3,5549316	1,4591559 7 4140856	2 281692	8,3295799	2,281692	3,8732415	8,4676,5	6,5521141	5,0140875	7,1887339	1/6925601	2,600019	0,0535228	5016021'n	8,6478898	1,140846	6,4197206	1,3267624	5,5971844	6,4197206	0,5577491	14,005635	9,7352129	2 281692	7,3746502	12,281692	4,5058612	5,0140875	4,6422548	6,1014107	PCCCC20/1	2.7323954	1,1943688	3,3690152	7,8253536	6,4197206
(mɔ) ıməlQ	28,6478898 2	1 2565850/61	23,5549316 2	1 9001909/11	22.281692 2	28,3295799 2	22,281692	23,8732415 2	1 033103711	1 16,55221141	35,0140875 3	1 95573331,71	2 1095259/12	22,6000019 2	20,0535228 2	1 1015021'01	28.6478898 2	11,140846	26,4197206 2	21,3267624 2	15,5971844 1	26,4197206 2	30,5577491 3	14,005635	1 9212357191	22 281692 2	27,3746502 2	22,281692 2	24,5058612 2	35,0140875 3	14,6422548 1	26,1014107 2	C ECCOSTS //T	12.7323954	31,1943688 3	13,3690152	17,8253536 1	26,4197206 2
sapadg	Acacla manglum	Eucolyptus camaldulensis	Acadia manglum	Acadia mangjum Eventumuru camaldulanele	Acacla manalum	Acada manglum	Acada auricuriformis	Acada manglum	Acada auricurijormis Acada auricuriformis	Acada manglum	Acacla manglum	Acacia manglum	Died	Acada auricuriformis	Acada manglum	Accelo mangium Accelo manajum	Acada manalum	Acacla manglum	Acacla manglum	Acacla manglum	Died	Acada manglum	Acacla manglum	Acacla manglum	Acada auricuriformis	Acacla manalum	Acacla manglum	Acada manglum	Acadia auricuriformis	Acada auricuriformis	Acacla manglum	Acada auricurijormis	Acada auricurijormis Died	Acacla manalum	Acacla manglum	Acada manglum	Acada auricuriformis Died	Died
Quadrant	1	-		-		-	7	- ·		• ••	1	1	-1	-			N 10	2	2	2	N 1		2	2	N 1	. 2	2	2	2	2	2 2	N 1			2	5	2 6	• *
Tree	-	2	m •	4 4	n uo	۲	60	σ ;	8 2	1 11	1	14	ñ	16	61	9 9	1 8	12	2	ង	8 5	18	S.	R	# 1	1 8	ä	35	36	37	8 3	ត្ត	3 5	9	43	46	47	1 4

Fig 4. Smartelo's PC TREES sheet screenshot

5. STAND spreadsheet

The Stand sheet is one of the sheets that are present in both versions of Smartelo. In it we will find a summary with the main mass variables that Smartelo calculates for each quadrant and species in each marteloscope. These stand variables are:

- Density
- Basal Area
- Volume
- Biomass
- Carbon
- CO2

Stand Characterization

Selec		Acacia mangium																
	Density				Basal Are	a		Volume			AGB			Carbon			CO2	
Cell	Total (trees/ha)	trees/ha	%	Total	m2/ha	%	Total	m3/ha	%	Total	t/ha	%	Total	t/ha	%	Total	t/ha	%
1	272,0	160	58,8%	11,053	7,000	63,3%	203,262	132,110	65,0%	58,361	39,637	67,9%	29,181	19,818	67,9%	106,976	72,654	67,9%
2	608,0	384	63,2%	22,522	14,006	62,2%	406,736	264,318	65,0%	120,244	78,846	65,6%	60,122	39,423	65,6%	220,407	144,524	65,6%
3	592,0	224	37,8%	18,874	6,804	36,1%	338,766	128,411	37,9%	98,978	37,902	38,3%	49,489	18,951	38,3%	181,427	69,474	38,3%
4	576,0	352	61,1%	17,415	12,678	72,8%	315,607	239,268	75,8%	95,067	72,079	75,8%	47,533	36,039	75,8%	174,258	132,121	75,8%
5	320,0	224	70,0%	17,296	8,471	49,0%	319,590	159,866	50,0%	80,142	47,851	59,7%	40,071	23,925	59,7%	146,900	87,711	59,7%
6	576,0	304	52,8%	18,000	10,077	56,0%	327,147	190,178	58,1%	94,360	56,483	59,9%	47,180	28,241	59,9%	172,962	103,533	59,9%
7	400,0	304	76,0%	18,320	15,126	82,6%	339,416	285,462	84,1%	100,737	86,935	86,3%	50,369	43,468	86,3%	184,652	159,352	86,3%
8	592,0	512	86,5%	25,811	23,409	90,7%	474,230	441,778	93,2%	150,194	133,484	88,9%	75,097	66,742	88,9%	275,306	244,676	88,9%
9	272,0	80	29,4%	16,206	3,747	23,1%	301,280	70,720	23,5%	86,968	21,272	24,5%	43,484	10,636	24,5%	159,413	38,992	24,5%
10	496,0	224	45,2%	20,658	9,189	44,5%	380,010	173,416	45,6%	113,122	52,003	46,0%	56,561	26,001	46,0%	207,353	95,321	46,0%
11	496,0	240	48,4%	27,557	17,465	63,4%	512,229	329,615	64,3%	151,779	102,981	67,8%	75,890	51,490	67,8%	278,211	188,764	67,8%
12	624,0	480	76,9%	17,596	15,421	87,6%	315,937	291,029	92,1%	95,322	86,259	90,5%	47,661	43,130	90,5%	174,725	158,113	90,5%
13	704,0	528	75,0%	18,806	14,674	78,0%	340,323	276,927	81,4%	101,920	81,946	80,4%	50,960	40,973	80,4%	186,820	150,207	80,4%
14	720,0	560	77,8%	18,077	14,926	82,6%	332,775	281,696	84,7%	99,017	83,025	83,8%	49,509	41,513	83,8%	181,498	152,186	83,8%
15	512,0	304	59,4%	18,947	13,981	73,8%	347,215	263,854	76,0%	102,904	79,448	77,2%	51,452	39,724	77,2%	188,624	145,628	77,2%
16	352,0	0	0,0%	43,209	0,000	0,0%	659,615	0,000	0,0%	224,672	0,000	0,0%	112,336	0,000	0,0%	411,824	0,000	0,0%
Total	507	305	60,2%	20,647	11,686	56,6%	369,634	220,540	59,7%	110,862	66,259	59,8%	55,431	33,130	59,8%	203,210	121,453	59,8%

Fig 5. Smartelo's PC STAND sheet screenshot

6. ECONOMY spreadsheet

The Economy sheet is in charge of collecting the necessary information to obtain the main economic and financial results offered by Smartelo. All the necessary information is divided into two tables:

• The **left table** contains a series of essential data for obtaining the economic and financial results.

In it, all the unit prices (PU; in euros/cubic meter), for all the diameter classes (CD) and qualities of each species that form the marteloscope must be inserted.

This process is manual, and is essential to obtain the utilization price, both current and potential, of all the feet that form the classroom.

The column called PRD% (Disaster Recovery Percentage) corresponds to the percentage of the current utilization price that will be received in the event of a disaster with a return period set on the Home page (Table on the left, Economy section). Smartelo increases the utilization price according to the PRD% set for each species, quality and CD.

• The **right table** contains information about the unit prices (PU; in euros/cubic meter) of each species present in the marteloscope according to the wood transformation industry to which it is destined. The info related to the different industries must be added by the user.

Note: The price table for industries should only be completed if you have volume data for them, since Smartelo calculates utilization prices for the different industries, species and trees present in the marteloscope.

			try5 Industry6	m3) UP (¢/m3)	10	10	10	10												
			4 Indust) UP (c)	4	6	40	4												
	3	5	Industry	UP (¢/m3	20	20	20	20												
	ires hy indus		Industry3	UP (¢/m3)	20	20	20	20												
	I Initary n		Industry2	UP (€/m3)	25	25	25	25												
			Industry	UP (€/m3)	∞	80	80	80												
				Species	Acacia mangium	Eucalyptus camaldulensis	Acacia auricuriformis	Died	Litsea glutinosa	Aporosa villosa	Averrhoa carambola	Senna siamea								
		PRD (%)	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,8	0,8	0,8	0,8	0,8	0,8	0,2	0,2	0,2
		t/m3)			5	2	0	0	2	0	8	8	4	4	0	0	5	5	0	0
	y prices) an (0	5	0	5	0	5	0	5	0		0	5	0	2	0	5	0
	Unitar	e A		-	-	2	2	m	m	4	4	5		-	-	2	2	ŝ	m	4
'n		Quali	A	A	A	A	A	A	A	A	A	A	8	8	8	8	8	8	8	8
Econo		Species	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium	Acacia mangium

Fig 6. Smartelo's PC ECONOMY sheet screenshot

7. ECOLOGY spreadsheet

One of the main novelties included in Smartelo is the ecological analysis of the marteloscope. This function allows the assessment of each tree in the marteloscope depending on its environmental/ecological importance based on a series of attributes set by the user. In this way, Smartelo will be able to carry out not only an economic evaluation (referring to the direct exploitation of the marteloscope's wood resources), but also an environmental one. This option offers very valuable information for decision making for different actions (harvesting or conserving depending on the utilization price of each tree), as well as for use in possible CDM, REDD, REDD+ projects or the implementation of payments for ecosystem services in a given area. Discover more about the possibilities offered by Smartelo in this area by visiting the official iuFOR site.

The Ecology sheet is designed to generate the above-mentioned unique codes based on a series of attributes (at the manager's choice). These attributes will be evaluated by means of a scale from 0 to 10, depending on the importance that each manager gives to each one of them for each unique code. By default, Smartelo has 4 attributes (vegetation, insects, reptiles and birds). As mentioned before, these attributes can be changed by others, simply by modifying the name of each one of them, as well as adding or removing them. Once the required information has been filled in (singular code, evaluation of attributes and description of each code), one or more codes can be assigned to a given tree in the Trees sheet. The column enabled for this purpose is called Singular Codes.

Singular Ecocodes													
		Attr	ibutes										
Codes	Vegetation	Insects	Reptiles	Birds	Description								
G1	1	3	2	1									
G2	3	4	3	4									
G3	3	4	3	4									
H1	1	3	2	1									
H2	3	4	3	4									
H3	3	4	3	4									
F1	2	3	2	1									
F2	4	4	3	1									
F3	4	4	3	1									

Fig 7. Smartelo's PC ECOLOGY sheet screenshot

8. TEAMS spreadsheet

Another interesting function offered by Smartelo is the possibility of working with different teams or forest managers. This option allows obtaining different results depending on the decisions made by each team/manager. Let's imagine a class with 20 students, in which each one has different performance ideas for the same trees, or they are working with different trees within the same marteloscope. Smartelo allows you to generate a summary of the results (dendrometric, ecological, economic) of all of them and visualize them in the Results sheet. In this way, the Teams sheet contains all the information regarding the different teams/managers that work with the marteloscope.

The way to work with this sheet is the following:

- 1. First, the name of the team/manager must be entered in the first column, called Name.
- 2. Then, write down all the feet that you want to select to work with them, that is, those on which you are going to act, either because you want to harvest, keep or carry out any other action of those that appear in the table on the right (Reasons).
- 3. Once the above has been done, each selected tree will be acted upon. This step consists of deciding for what reason you have selected or wish to work with that trees. To do this, a value must be assigned to the Reason column taking as a reference the table on the right, called Reasons.
- 4. Finally, note that the last column, called Team reason, should not be edited, since it contains formulas and is automated by Smartelo.

Note: The name of the team/manager must appear in all the rows where trees selected by that team/manager appear. It is recommended to drag the first row down,or copy and paste the name until it contains all the selected trees.

How to update Teams in Smartelo

Smartelo allows you to view the different results by team/operator on the Results sheet.

These equipments/operators can suffer changes over time, so it is necessary to update this information for the correct operation of the application.

Once the equipment/operators have been added/deleted from this sheet, go to the Home page and click on the Extract button in the Equipment/Operators table. The list included in that table will be automatically updated and you will be able to proceed with your work. You can also check that the drop-down list of Equipment/Operators in the Results sheet has been updated with the latest changes.

Note: This same procedure must be done every time you add or remove species in the Trees sheet, although this time you must click on the Extract button located in the Species table of the Home sheet. Every time your inventory undergoes some kind of change it is recommended to perform this action.

Fig 8. Smartelo's PC TEAMS sheet screenshot

9. BIOMASS spreadhseet

The Biomass sheet is designed to analyze the contents of it in the marteloscope. This Smartelo function allows the user to obtain information of great importance and impact both current and future, being carbon quantification, help in decision-making in REDD, REDD or CDM projects or the implementation of payments for ecosystem services some of the most significant, among others.

This sheet is divided into two parts:

- **Biomass** (Left side):
 - AGB (Aboveground biomass)
 - Ws (Stem biomass)
 - WI (Leaves biomass)
 - Wb (Branches biomass)
 - Carbon
 - o **CO2**
- Biomass results (Right side):

This part of the leaf shows a table that provides total biomass results for each species and type of biomass. If you wish, you can filter one or more species with both the filter located in the cell named Species, with both the markers located just below the table. Located on the right side of this table is dynamic chart, show information about

Biomass, carbon and CO2 by cell and Biomass, Carbon and CO2 by species (%)

	Bi	omass														
			Biomass, Carbon and CO2 (t)													
Tree	Quadrant	Species	AGB	Ws	M	МЪ	υ	õ								
1	1	Acacia mangium	0,368	0,181	0,045	0,044	0,184	0,675								
2	1	Eucalyptus camaldulensis	0,136	0,116	0,007	0,006	0,068	0,249								
3	1	Acacia mangium	0,245	0,170	0,034	0,041	0,122	0,449								
4	1	Acacia mangium	0,055	0,032	0,013	0,016	0,027	0,100								
5	1	Eucalyptus camaldulensis	0,049	0,040	0,003	0,003	0,025	0,090								
6	1	Acacia mangium	0,218	0,101	0,032	0,032	0,109	0,400								
7	1	Acacia mangium	0,360	0,232	0,045	0,050	0,180	0,660								
8	1	Acacia auricuriformis	0,208	0,156	0,020	0,031	0,104	0,382								
9	1	Acacia mangium	0,252	0,174	0,035	0,042	0,126	0,462								
10	1	Acacia auricuriformis	0,355	0,268	0,033	0,052	0,178	0,651								
11	1	Acacia auricuriformis	0,033	0,022	0,004	0,008	0,017	0,061								
12	1	Acacia mangium	0,118	0,053	0,021	0,022	0,059	0,216								
13	1	Acacia mangium	0,559	0,331	0,060	0,061	0,280	1,025								
14	1	Acacia mangium	0,127	0,068	0,022	0,025	0,064	0,233								
15	1	Died	0,174	0,000	0,000	0,000	0,087	0,319								
16	1	Acacia auricuriformis	0,214	0,161	0,021	0,032	0,107	0,393								
17	1	Acacia mangium	0,175	0,126	0,027	0,035	0,088	0,321								
18	2	Acacia mangium	0,043	0,019	0,011	0,012	0,021	0,079								
19	2	Acacia mangium	0,052	0,037	0,012	0,017	0,026	0,095								
20	2	Acacia mangium	0,368	0,174	0,045	0,044	0,184	0,675								
21	2	Acacia mangium	0,052	0,012	0,012	0,010	0,026	0,095								
22	2	Acacia mangium	0,311	0,230	0,040	0,049	0,156	0,570								
25	2	Acacia mangium	0,199	0,178	0,030	0,041	0,100	0,365								
26	2	Died	0,070	0,000	0,000	0,000	0,035	0,128								
27	2	Acacia mangium	0,319	0,213	0,041	0,047	0,160	0,585								
28	2	Acacia mangium	0,311	0,171	0,040	0,042	0,156	0,570								
29	2	Acacia mangium	0,421	0,217	0,050	0,049	0,211	0,772								

Fig 9. Smartelo's PC BIOMASS sheet screenshot

10. RESULTS spreadsheet

Results is one of the main important sheets of Smartelo, where the users can visualize the main results of the signaling activity in the marteloscope.

One of the great advantages that this sheet has is the possibility to obtain and compare the different results depending on the team/manager that we select in the top bar (selectable next to Team) and display on this sheet only those of the team /manager that we want. Dynamic tables in this sheet must be updated anytime a new team/operator joins Smartelo PC.

Fig 20. Smartelo's PC RESULTS sheet screenshot